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Abstract: Optimization is a valuable tool in structural engineering, enabling the achieve of optimal solutions that 

meet design constraints and objectives. The application of multi-objective optimization in steel trusses can bring 

significant benefits in terms of structural efficiency and economy. In this article, an automated approach was 

developed to obtain parametric and multi-objective optimal settings for flat truss structures. The methodology was 

developed based on the utilization of the finite element method for structural analysis and the integration of 

evolutionary computing techniques, employing Genetic Algorithms (GAs) via MATLAB. Furthermore, to address 

the uncertainties inherent in the optimization process, a reliability analysis was conducted using the First-Order 

Reliability Method (FORM). This analysis took into consideration the variability of key parameters such as area, 

density, diameters, thicknesses and displacement, treating them as random variables. The results demonstrated 

good accuracy when compared to benchmark trusses from the literature, highlighting the potential of applying 

multi-objective optimization in steel trusses to improve efficiency and quality of these structures. 
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1  Introduction   

Optimization is a fundamental tool in structural engineering to find solutions that better meet the design's 

requirements and purpose. This involves defining an objective function to minimize or maximize, identifying the 

design variables that can be adjusted to achieve these objectives, Rao[1]. 

 

Within the scope of structural engineering, objective functions play an essential role as they are directly 

linked to the optimization of various aspects of the design. These functions comprehend volume reduction, 

minimizing material costs, decreasing maximum displacements, and most importantly, weight reduction. To 

achieve these goals, a variety of design variables must be taken into account, such as structural proportions, 

appropriate material selection, and geometry of structural elements. Each of these choices directly impacts the 

overall performance of the structure, making them vital for the design's success. During the manufacturing process 

of a product, performance requirements need to be evaluated. Therefore, in the optimization process, uncertainties 

in the structural system, such as external loads, material properties, manufacturing quality, and geometry, must be 

considered to mitigate performance degradation of the structure and/or have safer designs in the presence of these 

uncertain parameters, with better control over their lifespan. Therefore, deterministic optimal solutions may lead 

to structures with reduced levels of reliability, as stated by Beck and Gomes [2]. 

 

In this way, the application of models that consider the unpredictability of parameters in their analysis is an 

advantageous research avenue, aiming to construct safer and more reliable designs. In this context, Deterministic 

Optimization (DO) and Reliability-Based Design Optimization (RBDO) can be combined, with the main 

difference between them lying in the probabilistic constraints that must be simultaneously considered, as they both 

have the same objective. According to Kim et al. [3] and Yoon and Choi [4], probabilistic constraints in RBDO 

models are formulated with the purpose of constructing an approximate linear function to closely represent the 

nonlinear limit state function for the calculation of reliability and optimization index through appropriate 

transformations. Therefore, RBDO has emerged as an alternative to properly model the safety aspect under 

uncertainties in the optimization problem. With RBDO, it is possible to ensure that a minimum level of safety, 

predetermined by the designer, is maintained by the optimal structure. The objective of RBDO is to take into 
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account the randomness of applied loads, material properties, and/or geometric parameters, among other variables 

that may be considered. The resulting optimal configurations depend on the desired levels of reliability. 

Kharmanda et al. [5], Silva et al. [6], and Nguyen et al. [7] propose reliability-based topology optimization 

algorithms for a single cycle.  

  

The purpose of this article is to analyze issues related to steel trusses using a multi-objective optimization 

approach to obtain an optimal solution that balances the structure's weight with its displacement, resulting in a 

low-cost and safe design for the project under consideration. To achieve this goal, the Finite Element Method 

(FEM) was employed for structural analysis. Thus, the evolutionary computation technique, Genetic Algorithms 

(GAs), in conjunction with MATLAB software, was used to perform the structural optimization. This approach 

allowed the optimization of conflicting functions, weight and displacement of the structure, seeking a balance 

between them. 

 

Additionally, the Reliability Index Approach (RIA) is frequently used to estimate probabilistic constraints 

with acceptable computations. The probabilistic constraints of RIA are formulated in terms of the reliability index. 

The genetic algorithm has been applied in truss optimization problems, as described by Lee [8], Lage [9], and 

Mattos [10]. However, so far, none of these cases address multi-objective optimization. Therefore, implementing 

a multi-objective optimization approach can be an innovative proposal, bringing several benefits, such as achieving 

a better trade-off between structural weight reduction and mechanical strength enhancement of the truss. This 

would allow exploring these conflicting objectives, resulting in solutions that offer an optimal balance between 

these two performance criteria. 

2  Multi-objective Optimization 

 In contrast to single-objective optimization, a solution for a multi-objective problem is more of a concept 

than a definition. Typically, there is no single global solution, and often it is necessary to determine a set of points 

that fit within a predetermined definition for an optimum. In general, a multi-objective problem (MOP) can be 

expressed as follows: 

Minimize: f(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘(𝑥)]𝑇 

                                          Subject to:  h𝑖(𝑥) = 0,   i = 1,2,...,n       

g
𝑗
(𝑥) ≤ 0,  j = 1,2,...,m  

     xlj < 𝑥𝑡 < 𝑥𝑢𝑗 ,  t = 1,2,...,p  

(1) 

where k is the number of objective functions , m is the number of inequality constraints, n is the number of equality 

constraints, p is the number of design variables , 𝑥 ∈ 𝑅𝑁 is the vector of design variables, and  𝑓(𝑥) ∈ 𝑅𝑘 is the 

vector of objective functions where 𝑓𝑖(𝑥): 𝑅𝑁 → 𝑅. The feasible design space is defined as 𝑋 =

{𝑥 / 𝑔𝑗(𝑥)  ≤ 0, 𝑗 = 1,2, … , 𝑚  }. The feasible criterion is defined as the space 𝑓(𝑥) = {𝑓(𝑥)/𝑥 ∈ 𝑋}. 

 

           In MO problems, it is known that finding an x* that minimizes several objective functions simultaneously 

is an extremely difficult task. A way to determine a solution that partially satisfies these equations present in the 

MO is contained in the definition of Pareto Optimality, Pareto [11] , which is defined as follows:  

 

Definition 2 - Pareto optimality  – A point, 𝑥∗ ∈ 𝑋  is Pareto optimal if there is no other point 𝑥 ∈ 𝑋, such that 

𝐹(𝑥) ≤ 𝐹(𝑥∗) and 𝐹𝑖(𝑥) ≤ 𝐹𝑖(𝑥∗) for at least one function. Where i is the number of functions to be optimized. 

 

All Pareto optimal points lie on the boundary of the feasible criterion space. Often, algorithms provide 

solutions that may not be Pareto optimal but can satisfy other criteria, making them meaningful for many practical 

applications. For example, the weak Pareto optimality is defined as follows: 

 

Definition 3 – Weak Pareto Optimality – A point 𝑥∗ ∈ 𝑋  is a weak Pareto optimal if there is no other point 𝑥 ∈
𝑋, tal que 𝐹(𝑥) ≤ 𝐹(𝑥∗). 

 

There are several strategies for solving multi-objective optimization (MO) problems. Some of these strategies 

include the Hierarchical Optimization Method, the Negotiation Method, the Goal Programming Method, the 

Global Criterion Method, and the Weighted Objectives Method. In this article, the Weighted Objectives Method 

will used for the objective optimization procedure, which involves assigning weights to different objectives and 

transforming the multi-objective problem into a single-objective optimization problem, where the objective 

function is a weighted combination of the original objectives. 
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3  Reliability Analysis: First-Order Reliability Method (FORM) 

The concept of structural safety is related to the ability of a particular structure to withstand the various 

actions imposed on it during its service life while satisfying the functional conditions for its construction, Haldar 

[12]. Thus, the safety of a structure can be defined based on the probability of the occurrence of one of the failure 

states throughout its life. For a given design rule, the basic random variables are defined by their joint probability 

distribution associated with some expected parameters; the vector of random variables is denoted here as X, with 

realizations written as x. To assess the probability of failure with respect to a chosen failure scenario, a limit state 

function G(X) is defined by the condition for the proper functioning of the structure. In Fig. 1, the boundary 

between the failure state G(X) < 0 and the safety state G(X) > 0 is known as the limit state surface G(X) = 0. The 

probability of failure is then calculated by: 

𝑃𝑓 = 𝑃𝑟[𝐺𝑖(𝑿) ≤ 0] = ∫ … ∫ 𝑓𝑋(𝑥)𝑑𝑥

𝐺𝑖(𝑿)≤0𝐺𝑖(𝑿)≤0

 (2) 

Where 𝑓𝑿(𝑥) is the joint Probability Density Function (PDF) of the random vector X. The integral presented by 

equation 2 does not have an analytical solution for most practical cases. Additionally, in typical engineering 

problems, the majority of random variables are correlated, and their distributions are complex, making exact 

multidimensional integration of the probability of failure impossible. The solution to the problem can be obtained 

by adopting simulation methods or approximate methods, where the probability of failure is obtained through 

reliability indexes. 

Lee and Chen [13] reviewed several analytical methods for approximately solving this integral. Among these 

approaches, FORM is particularly favorable due to its simplicity and efficiency. The idea of FORM is to transform 

the integral in the original random space into a measurable reliability index, which is interpreted as the minimum 

distance from the origin to the limit state function in the normalized space (U-space). The limit state function, 

G(X), is described as a function of the variables U, i.e., G(U). Then, we search for the point U*, called the design 

point, whose distance to the origin is minimum (Most Probable Point - MPP), as shown in fig.1. The distance 

between U* and the origin represents the system's reliability index, β, and the probability of failure can be obtained 

through the following equation: 

𝑃𝑓 = Φ(−𝛽) 𝑎𝑛𝑑 𝛽𝑡 = −Φ−1(𝑃𝑓
𝑡)  (3) 

 
Figure 1 - First Order Reliability Method (FORM) - Adapted from Choi et al. [14] 

where CDF is the standard cumulative distribution function, 𝛽𝑖 is the target reliability index for the i-th constraint, 

and  𝛽𝑖
∗ is the reliability index evaluated by the distance from the origin to the MPP in the normalized space. The 

vector X is transformed into an independent and normalized vector U (zero mean, unit variance), expressed as 

𝑈 =
(𝑋−𝜇)

𝜎
 , where μ and σ are the vectors of mean values and standard deviations associated with X, respectively. 

In the case of a normal distribution, a normalized vector U is given by:  

𝑈 =
(𝑋 − 𝜇𝑥)

𝜎𝑥

 (4) 

where μ and σ are the vectors of mean values and standard deviations associated with X, respectively. Based on 

the transformation above, the constraint function is defined as follows: 

𝐺𝑖(𝑿) = 𝐺𝑖(𝑇−1(𝑼)) = 𝐺𝑖(𝑼) (5) 

 where 𝐺𝑖(𝑼)  is the i-th constraint in normalized space. 

In this paper, the FORM (First-Order Reliability Method) was adopted, which is a method that employs 

Taylor series expansion, approximating the failure function iteratively by linearizing it at each point until the 
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results converge to the design point. The design point is located at the minimum distance from the origin to the 

failure function. This method is based on the work of Hasofer and Lind [15]. 

4  Numerical Examples 

The optimization for the 10-bar truss was developed as shown in fig.2 (a). After validating the results of the 

implemented program with the literature, it generated a 19-bar truss by increasing the number of bars, which in 

turn increased the number of functions to be optimized, thus creating a multi-objective optimization, as depicted 

in fig.2 (b). 

  
(a) (b) 

Figure 2 - Flowchart: (a) Plane Truss 10 bars; (b) Plane Truss 19 bars. 

4.1  Plane Truss with 10 bars 

The steel structures were dimensioned using the Finite Element Method (FEM), and the formulation of the 

method based on displacement is founded on the principle of virtual displacements, Bathe [16]. The optimization 

was implemented using GAs. Initially, a 10-bar cantilever truss was analyzed to validate the results, which is a 

well-known benchmark in the literature. The parametric optimization was validated by comparing the results with 

those of Lee [8]. The material properties of the bars are as follows: density = 2767.99kg/m³; elastic modulus = 

68947.57MPa; and lengths L1 = 9.144m and L2 = 9.144m. The applied loads are P = 444.78x10³N at nodes 2 and 

4, as shown in fig. 3. 

 
Figure 3 – Plane Truss 10 bars. 

           The design variables to be optimized in order to minimize the weight of the structure are the cross-sectional 

areas of the bars (A1 to A10). The objective function is given by equation (6), subject to stress and displacement 

constraints, as well as lateral constraints with a minimum limit of 6.45x10−5m². 
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Minimize: f(𝐴) = 𝑊(𝐴) = 𝛾 ∑ 𝐿𝑖𝐴𝑖

𝑛

𝑖=1

 

                                                   Subject to:  g
1

(𝐴) = 𝜎(𝐴) − 𝜎𝑚á𝑥 ≤ 0 ,  𝜎𝑚á𝑥 ± 172.36𝑀𝑃𝑎 

                                                 g
2

(𝐴) = 𝜇(𝐴) − 𝜇𝑚𝑖𝑛 ≤ 0 , 𝜇𝑚𝑖𝑛 ± 0.0508𝑚 

(6) 

4.2 Plane Truss with 19 bars 

The material properties of the bars in the 19-bar truss are as follows: density = 7850 kg/m³; elastic 

modulus = 210000 MPa; yield strength 𝑓𝑦 = 355MPa; ultimate tensile strength 510 MPa. The bars have a length 

(L) of 6.0m and a height (h) of 3.984m. The applied loads are 𝑃 = 106N at nodes 7, 8, 9, 10, and 11, as shown in 

Fig. 4. The design variables are the external diameter and thickness, divided into 4 groups according to the bar 

identification in Fig. 4.  

     The design variables to be optimized for minimizing the weight of the structure and the maximum vertical 

displacement between nodes 3 and 4 are the external diameters (d1, d2, d3, d4) and the thicknesses (t1, t2, t3, t4). 

These variables must satisfy lateral constraints with diameters ranging from 88.9x10−3m to 508.0x10−3m and 

thicknesses from 3.2x10−3m to 25.0x10−3m. The objective function, equation 7, along with the constraints from 

NBR8800:2008 [17], are applied: 

 

Figure 4 - Geometry, loads, nodes and element  

Minimize: 𝑓1(𝑥) = 𝑊(𝑥) = 𝛾 ∑ 𝐿𝑖𝐴𝑖 , 𝑥 = 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑡1, 𝑡2

𝑛

𝑖=1

, 𝑡3, 𝑡4 

𝑓2(𝑥) = 𝑚á𝑥 (𝑢3𝑦, 𝑢4𝑦), 𝑥 = 𝑢3𝑦 , 𝑢4𝑦                  

 

        𝑓(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥)        𝑤𝑖𝑡ℎ    𝑤1 + 𝑤2 = 1 

             
                          Subject to:  g

1
(𝑥) = 𝑁𝑐,𝑆𝑑 − 𝑁𝑐,𝑅𝑑 ≤ 0  

 

                                              g
2

(𝑥) = 𝑁𝑡,𝑆𝑑 − 𝑁𝑡,𝑅𝑑 ≤ 0 

(7) 

where 𝑁𝑐,𝑅𝑑 is the design compressive resistance, 𝑁𝑐,𝑆𝑑  is the design compressive force, Ne is the elastic axial 

buckling force; λ0 is the reduced slenderness index; Q is the total reduction factor associated with local buckling; 

Ag is the gross cross-sectional area of the bar; 𝜒 is the reduction factor associated with compressive strength, 𝑓𝑦  

is the yield strength of the steel. 

For tensile strength, according to NBR8800:2008, equation (10) is as follows: 

𝑁𝑡,𝑅𝑑 =
𝐴𝑔𝑓𝑦

𝛾𝑎𝑙

 (10) 

where: 𝑁𝑡,𝑅𝑑 is the axial tensile strength of calculation, 𝑁𝑐,𝑆𝑑, is the axial tensile force requesting calculation. 

 

For compressive strength, according to NBR8800, equations (8) and (9) are as follows: 𝑁𝑐 =
𝜋2𝐸𝐼

𝑘𝐿²
 , 𝜆0 = √

𝑄𝐴𝑔𝑓𝑦

𝑁𝑐
 

and 𝑁𝑐,𝑅𝑑 =
𝜒𝐴𝑔𝑓𝑦

𝛾𝑎𝑙
 . 

             Thus, 𝜆0 ≤ 1.5, there is: 

𝜒 = 0.658𝜆0
2
 (8) 

            Thus, 𝜆0 > 1.5, there is: 

𝜒 =
0.877

𝜆0
2  

 

(9) 
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In the reliability analysis, weighted variables were considered for the two trusses: the 10-bar truss, which 

involves the area and density variables, and the other with 19 bars, considering the diameters, thicknesses and 

displacement. All of these variables follow a normal probability distribution, employing a reliability index of 

β=3.0, corresponding to a probability of failure of 0.0013. 

5  Results and Discussion: 

The input parameters for the Genetic Algorithms (GAs) in MATLAB for the 10-bar truss were a population 

of 800 individuals over 20 generations, with the design variable set to an initial search value of an area equal to 

6.45x10−5m². From the obtained results, a high similarity was observed between the found areas and the total 

weight of the truss when compared to the author Lee [8], demonstrating the satisfactory implementation of the 

optimization. Furthermore, the optimization resulted in lighter truss structures, as shown in tab.1. 

Table 1 - Area values and optimized structural weight - Plane Truss 10 bars. 

Areas 

(x10−5 m²) 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Weight 

(kg)  

Lee, 2004 1945.1 6.581 1465.2 985.2 6.581 35.10 486.5 1390.9 1383.8 6.452 2294.2 

Author 2000.0 6.452 1624.5 929.7 6.452 6.452 535.5 1347,1 1310.3 6.452 2290.6 

Figure 5 shows the convergence of the objective function with 6 generations in Genetic Algorithms, 

reaching the global optimum.  

 
Figure 5 - Objective Function by Generations - 10-bar Truss  

In the 19-bar truss, the Pareto frontier graph (fig. 6) reveals the weight-displacement trade-off. The lowest 

weight (10517.4 kg) corresponds to the highest displacement (28.24 x10−3m), and the lowest displacement (18.39 

x10−3m) is associated with a weight of 12027.6 kg. 

 
Figure 6 - Pareto Frontier - 19-bar Truss 
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6  Conclusion 

Based on numerical simulations and reliability analysis, it can be concluded that the optimization of the 10-

bar truss using genetic algorithms is fast and effective, achieving the specified tolerance in just 6 generations. The 

obtained weight is satisfactory and accurate, being lighter than Lee's proposal [8]. The bar areas also align well 

with the literature, and the reliability analysis validates the structural safety. In the 10-bar truss, the bars with 

connections at the ends have the largest areas, ensuring resistance, while others are more relevant for stability. 

Multi-objective optimization in the 19-bar truss shows that reducing weight has a low impact on displacement, 

staying within specified safety limits. Multi-objective optimization with reliability is an engineering technique, 

enabling more efficient designs. The graphical representation of the Pareto frontier facilitates decision-making to 

select the best design option for the flat structural truss to be developed. 
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